
A0O-AL02 059 MA RYLAND UNIV COLLEGE PARK COMPUTER VISION LAB FIG 9/2
CELLULAR ARCHITECTURES: FROM AUTOMATA TO HARDWARE(U)
MAY 81 A ROSENFELD AFOSR-77-3271

UNCLASSIFIED YR-1048 AFOSR-TR-81-0557 ML

MENEM mmhh



4

I1EVEL

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

UNIVERSITY OF MARYLAND DTIC
COLLEGE PARK, MARYLAND ELECTE

20742 JUL 28 1981

SR D

kn~ ter pblic roleasw

3 8i 7 24 046



, //

TR-1048 i May 1981

AFOSR-77-32717

fFLLULAR 4RCHITECTURES: / ,

FROM kUTOMATA TO HARDWAREO

/K Azriel/osenfeld

Computer Vision Labcorartory
Computer Science Center
Uni arsity of Maryland
College Park, MD 20742

,/. /
/

///.

ABSTRACT

Cellular automata have been studied for many years both

as pattern generators and as acceptors for pattern languages.
At the same time, computer architectures analogous to two-

dimensional cellular automata have been proposed and used for

image processing and recognition. In recent years, various
extensions to the basic cellular automaton concept have been

proposed. These extensions should be of interest in connection

with the design of future hardware systems for image processing
and analysis.

AIR FORCE Oyi'IC OF SCISTIF10 RESEARCH (AYSC)

NOTICE OF TRANSXITTAL TO DDC

This %9chnical repnrt ba Leen reviewed Nud Is

approved for pb c1 relOeSe lAW AYR 190-12 17b).
ottribut~oU Is unlimited-

A. D. BLOSE
_Tjohel@L j f gItO n O1 ot"

The support of the U.S. Air Force Office of Scientific Research

under Grant AFOSR-77-3271 is gratefully acknowledged, as is
the help of Sherry Palmer in preparing this report. DTIC

ELECTE

JUL 28 1981

-1L



1. Introduction

Two-dimensional cellular automata - arrays of finite-

state machines that operate in parallel and each of which

can communicate with its neighbors - were introduced nearly

30 years ago as models for pattern generation and self-

reproduction. Over 20 years ago, a two-dimensional cellular

architecture (i.e., an array of processing elements) was pro-

posed byUnger for image processing applications [1,2]. More

recently, some attention was given to the use of cellular

automata as acceptors for two-dimensional formal languages

[3,41. Three monographs dealing primarily with cellular

automata were oublished in the USSR, Germany, and the USA

at the end of the 1970's (5-7].

Since Unger's work, a succession of hardware systems

incorporating cellular parallelism have been proposed or built.

Notable among these are McCormick's ILLIAC III, involving a

36 by 36 array [81 (in contrast, the later ILLIAC IV has only

64 processors); Duff's CLIP IV, 96 by 128 [91; ICL's DAP

(128 by 128 [10]; and NASA's MPP (128 by 128) (11].

In recent years, the classical cellular automaton

model has been generalized in a number of ways. The assump-

tion that the individual cells are finite-state machines

(i.e., each cell has a bounded amount of memory, no matter

how many cells there are) is overly restrictive in practice;

by assuming, e.g., that a cell's memory grows logarithmically

with the number of cells, the power and speed of the system

AJ



can be increased in a variety of ways. More interestinqly,

the topology of the system can be generalized, e.g., by per-

mitting communication over power-of-2 distances, or by building

a "pyramid" of arrays and allowing communication vertically

as well as (or instead of) horizontally. Still more generally,

one can consider cellular automata in which the "neighbor"

relation defines an arbitrary graph of bounded degree (or

perhaps degree logarithmic in the number of cells), rather

than a regular array. Finally, one can allow the neighbor

relation to change during the course of the computation.

This paper reviews basic concepts about cellular automata

and their generalizations, and suggests that some of these

generalizations may be of interest to the designers of future

hardware systems for image processing and recognition.

Accession For

?ETIS GRA&I
DTIC TAB
Unannounced

Just ifICatonet _

By__
-Dis~tribution/
Ava ilabilitY Cdes

'Avail sld/or



2. Bounded cellular automata (BCA's)

Traditionally, a two-dimensional bounded cellular

automation (BCA) is an array (say rectangular) of finite-

state machines ("cells") all having the same transition

function, where the new state of a cell depends on the

current states of itself and its neighbors in the array.

In more practical terms, we can think of a BCA as an array

of processing elements each of which has a finite amount of

memory, and all of which operate synchronously, in discrete

time steps, in accordance with the same stored program. Each

processor initially receives a piece of input data, and at

subsequent time steps, each processor accepts inputs from its

neighbors.

When a BCA is used for image processing or analysis,

the input data given to each processor is the gray level of a

pixel (or block of pixels), with neighboring processors getting

data from neighboring pixels or blocks. For simplicity, we will

usually assume a single pixel per processor from now on. We

will not consider here how images are input to or output from

the BCA; to avoid the need to consider I/O time, we may suppose

that the input images are sensed directly by an array of sensing

elements, one per processor, and that output images are dir-

ectly displayed by an array of light-emitting elements, one

per processor.

* --- ~.~2~ ~ - -



The greatest advantages of BCA's over conventional com-

puters is that BCA's can perform local operations on the input

image in parallel so that the computation time required grows

only with the complexity of the operation, not with the image

size (at the price, of course, of requiring the number of pro-

cessors to grow with the image size). Their advantage is

somewhat reduced when we use them to compute properties of

the image, or to make decisions on the basis of such pro-

perties ("acceptance", in automata theory terminology). Here

the interprocessor communication structure (only neighbors can

communicate) causes the computation time to grow with the image

diameter. As a simple example, if we want to compute the histo-

gram of the image (i.e., count how often each gray level occurs

in it), we must send signals representing each value to a

common location so they can be summed, and some of these sig-

nals must travel a distance on the order of the image diameter.

Some of the BCA algorithus for efficient property measure-

ment or recognition are quite nonobvious (see, e.g., [51 for a

collection of such algorithms). An example is the shrinking-

and-shifting process that can be used to determine, for a given

binary-valued input image, whether the l's (or 0's) are connected,

in time on the order of the image diameter. Labelling the

connected components can also be done in O(diameter) time, but

the algorithm is even less obvious [12). Automata theorists

have made important contributions to our understanding of how

arrays of processors can be used efficiently for basic image

processing tasks.



3. Extensions

3.1 Augmented memory

In a classical BCA, each cell has a bounded amount of

memory, no matter how many cells there are. This implies,

in particular, that a cell cannot know its address in the

array, since its memory may not be large enough to hold that

address; and a cell cannot explicitly address cells more than

a bounded distance away. Historically, when the pattern

generation capabilities of BCA's were studied, efforts were

even made to minimize the number of states (i.e., the amount

of memory) in each cell. Keeping the amount of memory per

cell low does indeed reduce the hardware cost of a BCA; but

from a practical viewpoint, there is no reason not to allow

the memory per cell to grow, e.g., logarithmically, with the

number of cells. Logarithmic growth makes operations such as

histogramming easier (the values can be summed by a singlecell,

rather than using a set of cells as a counter), and also makes

it easy to compute such properties as moments and the auto-

correlation. It also facilitates connected component labelling

(e.g., use the coordinates of a distinguished cell in each

component as a label), run length coding, border coding,

medial axis transformation, and quadtree const uction, as well

as computation of region properties such as area, perimeter,

height, width, diameter, compactness, alongatedness, and con-

vexity. For further details on algorithms for these tasks see [13].



3.2 Augmented topology

The speed of many BCA operations can be increased by

allowing cells to communicate not just with their immediate

neighbors, but with cells at distances 2, 4, 8,... [14,15].

(On neighborhood size tradeoffs in BCAs see [16]). This

allows information to be sent to a common destination in

time proportional to the log of the BCA's diameter. An alterna-

tive idea [5, Ch. 6; 17] is to use a "pyramid" of BCAs, each

n nhalf of the size of the preceding (e.g., the sizes are 2 x2

2n-x2n ,2x2, lxl), where each cell communicates not only

with its "brother" neighbors on its own level of the pyramid,

but also with four "sons" on the level below and with a "father"

on the level above. Note that the total number of cells is

2nx2n(1 + + 1...) < 2 nx2n x 11, not much greater than the

number of cells in the base of the pyramid alone. Here the

height of the pyramid is the log of the BCA's diameter, and

tasks such as histogramming can be performed in O(log diameter)

time using the apex node of the pyramid as the counter. Many

of the algorithms for such pyramid BCAs require communication

upward only, and require the memory in a cell to grow (at most)

with its level in the pyramid, not (otherwise) with the number

of cells, so that the total amount of memory is proportional

to that of an ordinary BCA.

-- L.!



4. One-dimensional BCAs

Two-dimensional BCAs are rather expensive to build, and

the largest ones now in existence are 128 x 128 arrays. For

the same cost, one could build very large one-dimensional

BCAs, consisting of tens of thousands of cells. (Indeed,

the MPP has the option of operating as a 16,000-cell one-

dimensional BCA.) Such BCAs could be used for fast parallel

processing of various types of waveforms; one might, for

example, use two of them alternatingly, so that one processes the

previous waveform segment while the other loads the current

segment. Further speedup is possible by using a "triangle" of

such BCAs, each half of the size of the preceding, where each

cell communicates with its two brothers on its own level, two

sons on the level below, and one father on the level above;

2n +2n-l n+l
here the total number of cells is 2n +. ..<2n , and the

processing time for many tasks is O(n). In this section we

briefly mention two other possibilities for using one-

dimensional BCAs in image-related tasks.

4.1 Serial-parallel machines

A one-dimensional BCA can be used to scan an image one

row at a time, operating in parallel on each row and "moving"

sequentially from row to row. (Again, imagine two of them

operating alternately on video data, one processing the pre-

vious row while the other loads the current row.) Algorithms

for such "parallel-sequential" BCAs are given in [5, Ch. 7; 181;

as an example, if the cells have memory proportional to the log

of the row length, it is easy to do histogramming in time



proportional to the image diameter. Local operations, however,

now also take O(diameter) time, rather than O(constant) time.

4.2 Chain code processing

One-dimensional BCAs can also be used to process border

or curve information represented by chain codes. For example,

such a BCA can determine, in O(length) time, the intersections

(if any) of two given codes, and can determine the code(s) of

the borders of the union or intersection of the regions having

the given codes as borders. Various algorithms for chain code

analysis using one-dimensional BCAs are given in [19).

4.i



5. Graph-structured BCAs

One-and-two-dimensional BCAs, pyramids, etc. are all

composed of cells each of which communicates with a fixed

number of neighbors (ignoring border effects). More generally,

[20-22], one can consider graph-structured BCAs.in which the

neighbor relation defines an arbitrary graph of bounded

degree. If the amount of memory per cell is allowed to grow

logarithmically with the number of cells, one can also allow

the degree of the graph to grow in the same way.,

A BCA that has a fixed graph structure is of limited

interest unless there are many sets of input data to be

analyzed that all have the same graph structure (e.g., all

images are arrays). In image analysis, various types of graph

structures do arise (e.g., the adjaoency graph of a segmenta-

tion of an image into regions), but they differ from image to

image, and even vary in the course of processing a single

image (e.g., if regions merge or split). Thus it is of greater

interest to study graph-structured BCAs in which the initial

graph structure can be defined arbitrarily and can then modify

itself in the course of a computation.

A class of self-modifying graph-structured BCAs is defined

in [23-25]. It is shown in [24,26,27] how such BCAs can be

initially configured to represent a given segmentation of a

given image, e.g., in terms of its region boundary segment



graph or its quadtree. (The representation in terms of the

region adjacency graph is simpler, but requires graphs of

degree that can grow with the image size.) It is also shown

how such a BCA can modify its configuration as the image

representation changes, e.g., as regions split or merge,

and can perform subgraph matching in parallel, avoiding the

need for combinatorial search.

Arbitrarily graph-structured BCAs may not be easy to

implement in hard-wired form unless they have regular struc-

tures (array, tree, etc.). On the other hand, conventional

multiprocessor communication systems can be used to simulate

BCAs that have other fixed or variable graph structures. For

example,the ZMOB system [28], a collection of 256 Z80A micro-

processors that communicate via a fast bus, can be used to

simluate a reconfigurable graph-structured BCA having up to 256

cells. Such a simulation would be adequate for many real-world

tasks involving region-level image processing.

-- -



6. Concluding remarks

Two-dimensional BCAs are a classical model for image

processing and analysis at the pixel level. Such BCAs are

beginning to be built in reasonable sizes, but are still

quite costly, and are limited in speed for some tasks due

to communication delays. Their performance can be speeded

up by extending them in various ways: cell memory that

grows logarithmically with the number of cells; connections

to cells at power-of-2 distances, or the use of "pyramids"

of BCAs. At the same time, there exist types of BCAs that can

be built today at reasonable cost and that can solve practical

problems - e.g., one-dimensional BCAs for processing waveforms

or chain codes, or for row-by-row processing of images. Graph-

structured BCAs whose structure varies in the course of a

computation can be used for image analysis at the region level;

here again, the number of cells required is not very great,

and a variable-structure BCA can be simulated by a multi-

microprocessor system that allows sufficiently flexible inter-

processor communication.

4L



References

1. S.H. Unger, A computer oriented toward spatial problems,
Proc. IRE 46, 1958, 1744-1750.

2. S.H. Unger, Pattern detection and recognition, ibid. 47,
1959, 1737-1752.

3. A.R. Smith III, Cellular automata and formal languages,
Proc. llth SWAT, 1970, 216-224.

4. A.R. Smith III, Two-dimensional formal languages and
pattern recognition by cellular automata, Proc. 12th SWAT, 1971,
144-152.

5. A. Rosenfeld, Picture Lanuages: Formal Models for Picture
Recognition, Academic Press, NY, 1979.

6. R. Vollmar, Algorithnenin Zellularautomaten, Teubner,
Stuttgart, 1979.

7. V. Aladyev, Mathematical Theory of Homogeneous Struc-
tures and their Applications, Valgus, Tallinn, 1980.

8. B.H. McCormick, The Illinois pattern recognition computer -

ILLIAC III, IEEE Trans. EC-12, 1963, 791-813.

9. M.J.B. Duff, A cellular logic array for image processing,
Pattern Recognition 5, 1973, 229-247.

10. P. Marks, Low-level vision using an array processor,
Computer Graphics Image Processing 14, 1980, 281-292.

11. K.E. Batcher, Design of a massively parallel processor,
IEEE Trans. C-28, 1980, 836-840.

12. S.R. Kosaraju, Fast parallel processing array algorithms
for some graph problems, Proc. llth STOC, 1979, 231-236.

13. C.R.. Dyer and A. Rosenfeld, Parallel image processing by
memory-augmented cellular automata, IEEE Trans. PAMI-3,
1981, 29-41.

14. R. Klette, A parallel computer for digital image pro-
cessing, EIK 15, 1979, 237-263.

15. R. Klette, Parallel operations on binary images, Computer
Graphics Image Processing 14, 1980, 145-158.



16. A.R. Smith, Cellular automata complexity trade-offs,
Info. Control 18, 1971, 466-482.

17. C.R. Dyer and A. Rosenfeld, Triangle cellular automata,
Info. Control, in press.

18. A. Rosenfeld and D.L. Milgram, Parallel sequential array
automata, Info.Proc. Letters 2, 1973, 43-46.

19. T. Dubitzki, A. Wu and A. Rosenfeld, Parallel computation
of contour properties, IEEE Trans. PAMI-3, 1981, in press.

20. P. Rosenstiehl, J.R. Fiksel and A. Holliger, Intelligent
graphs: networks of finite automata capable of solving graph
problems, in R.C. Read, ed., Graph Theory and Computing, Academic
Press, New York, 1972, 219-265.

21. A. Wu and A. Rosenfeld, Cellular graph automata (I and II),
Info. Control 42, 1979, 305-353.

22. A. Wu and A. Rosenfeld, Sequential and cellular graph
automata, Info. Sciences 20, 1980, 57-68.

23. A. Wu and A. Rosenfeld, Local reconfiguration of networks
of processors, TR-730, Computer Vision Laboratory, Computer
Science Center, University of Maryland, College Park, MD,
February 1979.

24. T. Dubitzki, A. Wu and A. Rosenfeld, Local reconfiguration
of networks of processors: arrays, trees, and graphs, TR-790,
Computer Vision Laboratory, Computer Science Center, University
of Maryland, College Park, MD, July 1979.

25. A. Rosenfeld and A. Wu, Reconfigurable cellular computers,
TR-963, Computer Vision Laboratory, Computer Science Center,
University of Maryland, College Park, MD, October 1980.

26. T. Dubitzki, A. Wu and A. Rosenfeld, Region property computa-
tion by active quadtree networks, IEEE Trans. PAMI-3, 1981,
in press.

27. A. Rosenfeld and A. Wu, Parallel computers for region-level
image processing, Pattern Recognition, in press.

28. C. Rieger, J. Bane and R. Trigg, ZMOB: a highly parallel
multiprocessor, Proc. IEEE Workshop on Picture Data Description
and Management, 1980, 298-304.



SECURITY IL A,' IFICATION OF THIS PAGE (When Dota Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

S . MR 8 1 05 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4 TITL- ,ht ,htr) S.'TYPE OF REPORT & PERIOD COVERED

CELUJILAR A , URES. 2RlOM AUYOMATA TO HARDWARE TECHIHICAL

6. PERFORMING O'G. REPORT NUMBER

8. CONTRACT OR GRANT NUMBER(s)

.I'-" ;.;,::'.AFOSR-77-3271

9 ,P . l '=M4I t V ANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

- Laboratory, Computer Science Ctr AREA 6 WORK UNIT NUMBERS

n.r:i'.f >..aryland PE61102F

IL,:Cnrk .: 20742 2304/A2
1 t. -ONT -OLLING OFF'ICE NAME AND ADDRESS 12. REPORT DATE

.-r . :c. "ce of Scientific Research/NM 1'-AY 81
:;: i. .' -_ 0332 13,. NUMBER OF PAGES

1.4
14 VL IN , AGENCY NAME & ADDRESS(il different from Controlling Oftice) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED
15a. DECLASSIFICATION, DOWNGRADING

SCHEDULE

*6. ZNST Itlj I'<N %TATEMENT (of this Report)

pro.'ri :'-r public release; distribution unlimited.

17. LIST R 1UTION ST ATEMENT (of the abstract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Cellular autumata; image processing; pattern recognition; parallel processing.

20 ABSTRACT fC.-,,tnuea n reverav side If necessary and IdentifY by block nurnbor)

Cellular iutomata have been studied for many years both as pattern generators
and is a cceptors for pattern languages. At the same time, computer architec-
tures analogous to two-dimensional cellular automata have been proposed and
used for inage processing and recognition. In recent years, various extensions
of the basic cellular automaton concept have been proposed. These extensions
stould be of interest in connection with the design of future hardware systems
for image processing and analysis.

DD j 0AN A, 1473 EDITION OF I NOV 6S IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dre Entereo)

S- - i - -. I I :I


